Jessen's functional and majorization

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rényi divergence and majorization

Rényi divergence is related to Rényi entropy much like information divergence (also called Kullback-Leibler divergence or relative entropy) is related to Shannon’s entropy, and comes up in many settings. It was introduced by Rényi as a measure of information that satisfies almost the same axioms as information divergence. We review the most important properties of Rényi divergence, including it...

متن کامل

Greed and Majorization

We present a straightforward linear algebraic model of greed, based only on extensions of classical majorization and convexity theory. This gives an alternative to other models of greedy-solvable problems such as matroids, greedoids, submodular functions, etc., and it is able to express established examples of greedy-solvable optimization problems that they cannot. The linear algebraic approach...

متن کامل

Catalytic majorization and ` p norms

An important problem in quantum information theory is the mathematical characterization of the phenomenon of quantum catalysis: when can the surrounding entanglement be used to perform transformations of a jointly held quantum state under LOCC (local operations and classical communication) ? Mathematically, the question amounts to describe, for a fixed vector y, the set T (y) of vectors x such ...

متن کامل

Balanced Words and majorization

Write |w| = m, the length of w, and |w|1 = card({1 ≤ i ≤ m : wi = 1}) its 1-length. Define the cyclic shift σ : {0, 1}m → {0, 1}m by σ(w1 . . . wm) = w2 . . . wmw1. A cyclic subword of w is any length-q prefix of some σi−1(w), 1 ≤ i, q ≤ m. To any word w = w1 . . . wm we associate its orbit O(w), the vector O(w) = (O1(w), . . . ,Om(w)) consisting of the iterated cyclic shifts w, σ(w), . . . , σ...

متن کامل

Linear Preservers of Majorization

For vectors $X, Yin mathbb{R}^{n}$, we say $X$ is left matrix majorized by $Y$ and write $X prec_{ell} Y$ if for some row stochastic matrix $R, ~X=RY.$ Also, we write $Xsim_{ell}Y,$ when $Xprec_{ell}Yprec_{ell}X.$ A linear operator $Tcolon mathbb{R}^{p}to mathbb{R}^{n}$ is said to be a linear preserver of a given relation $prec$ if $Xprec Y$ on $mathbb{R}^{p}$ implies that $TXprec TY$ on $mathb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2015

ISSN: 1331-4343

DOI: 10.7153/mia-18-76